
Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 1

Unit – III 8085 Assembly Language Programming

(1)Explain instruction format and Opcode format of 8085 μP with example.
OR With help of examples, explain the formation of opcodes of 8085 OR
What is an instruction? List type of instruction based on size.

Each instruction of 8085 has 1 byte opcode. With 8 bit binary code, we can generate 256 different
binary codes. In this, 246 codes have been used for opcodes.

The size of 8085 instructions can be 1 byte, 2 bytes or 3

bytes. The 1-byte instruction has an opcode alone.

The 2 bytes instruction has an opcode followed by an eight-bit address or data.

The 3 bytes instruction has an opcode followed by 16 bit address or data. While storing the 3 bytes
instruction in memory, the sequence of storage is, opcode first followed by low byte of address or
data and then high byte of address or data.

2. Explain the addressing mode of 8085. OR What do you mean by
addressing mode? Explain diff. addressing mode for 8085 with examples.

Every instruction of a program has to operate on a data. Data may be direct in instruction, in
Register or in Memory. The method of specifying the data into the instruction is called Addressing
mode.

The 8085 has the following 5 different types of addressing.
1. Immediate Addressing mode
2. Register addressing mode
3. Direct Addressing mode

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 2

4. Indirect Addressing mode
5. Implied Addressing mode

Immediate Addressing
In immediate addressing mode, the data is specified in the instruction itself. The data will be a part

of the program instruction. All instructions that have ‘ I ’ in their mnemonics are of immediate

addressing type. For Example, MVI B, 3EH - Move the data 3EH given in the instruction to B

register.

Register Addressing
In register addressing mode, the instruction specifies the name of the register in which the data is

available. This type of addressing can be identified by register names (such as ‘A’, ‘B’ etc.) in the
instruction. For Example, MOV A, B -Move the content of B register to A register.

Direct Addressing
In direct addressing mode, the data will be in memory. The address of the data is specified in the
instruction directly.
For Example, LDA 1050H - Load the data available in memory location 1050H in accumulator.

Indirect Addressing
In indirect addressing mode, the data will be in memory. The address of the data is specified in the
instruction indirectly i.e. address is store in Registers. This type of addressing can be identified by
letter ‘M’ present in the instruction.

For Example: MOV A, M - The memory data addressed by HL pair is moved to A register.

Implied Addressing
In implied addressing mode, there is no operand. i.e. This type of instruction does not have any
address, register name, immediate data specified along with it.

For Example, CMA - Complement the content of accumulator.

(3) Explain the classification of instructions of 8085 on the basis of their
operation OR Give classification of 8085 instruction set with an example of
each

The 8085 instruction set can be classified into the following six functional group.
1) Data Transfer Instructions
2) Arithmetic Instructions
3) Logical Instructions
4) Branching Instructions
5) Stack related instructions

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 3

6) Input/output instructions
7) Machine Control Instructions

Group I - DATA TRANSFER INSTRUCTIONS:
These instructions move data between registers, or between memory and registers. These
instructions copy data from source to destination. While copying, the contents of source are not
modified.
Ex: i) MOV A, B ii) LDA 4600 iii) LHLD 4200

Group II - ARITHMETIC INSTRUCTIONS:
These instructions perform the operations like: Addition, Subtract, Increment, and Decrement.

Addition:-Any 8-bit number, or the contents of register, or the contents of memory location can be added to
the contents of accumulator. The result (sum) is stored in the accumulator. No two other 8-bit registers can
be added directly. Example: The contents of register B cannot be added directly to the contents of register
C. For example, ADD B

Subtraction: - Any 8-bit number, or the contents of register, or the contents of memory location can be
subtracted from the contents of accumulator. The result is stored in the accumulator. Subtraction is
performed in 2’s complement form. If the result is negative, it is stored in 2’s complement form. No two
other 8-bit registers can be subtracted directly. For example, SUB C
Increment and Decrement: - The 8-bit contents of a register or a memory location can be incremented or
decremented by 1.The 16-bit contents of a register pair can be incremented or decremented by 1.Increment
or decrement can be performed on any register or a memory location. Ex: i) INR D ii) INX H

Group III - LOGICAL INSTRUCTIONS:-
These instructions perform logical operations on data stored in registers, memory and status flags. The
logical operations are: AND, OR, XOR, Rotate, Compare, and Complement
For example, i) ORA B ii) XRA A iii) RAR

Group IV - BRANCHING INSTRUCTIONS:
The branching instruction changes the normal sequential flow of the Program. These instructions alter either
unconditionally or conditionally.
For example, i) JZ 4200 ii) RST 7 iii) CALL 4300

Group V - STACK RELATED INSTRUCTIONS:
Stack Related instructions are used for accessing the stack.
For example- PUSH B, POP C

Group VI - I/O INSTRUCTION
I/O instructions are used for reading or writing the input output port. For example IN 80H, OUT 90H

Group VI - MACHINE CONTROL INSTRUCTIONS:
The control instructions control the operation of microprocessor.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 4

For example i) SIM ii) RIM iii) HLT

4. Explain the Data transfer instructions of 8085 with example.

Copy from source to destination

MOV

Rd, Rs
This instruction copies the contents of the
source register into the destination
register, the contents of Rd, M the source
register are not altered. If one of the
operands is a memory location, its
location is specified by the contents of the
HL registers.
Example: MOV B, C or MOV B, M

M, Rs

Rd, M

Move immediate 8-bit

MVI
Rd, data The 8-bit data is stored in the destination

register or memory. If the operand is a
memory location, its location is specified
by the contents of the HL registers.
Example: MVI B, 57H or MVI M, 57H

M, data

Load accumulator

LDA 16-bit address
The contents of a memory location,
specified by a 16-bit address in the
operand, are copied to the accumulator.
The contents of the source are not
altered.
Example: LDA 2034H

Load accumulator indirect

LDAX B/D Reg. pair

The contents of the designated register
pair point to a memory location. This
instruction copies the contents of that
memory location into the
Accumulator. The contents of either the
register pair or the memory location are
not altered.
Example: LDAX B

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 5

Load register pair immediate

LXI Reg. pair, 16-bit data
The instruction loads 16-bit data in the
register pair designated in the operand.
Example: LXI H, 2034H or LXI H,
XYZ

Load H and L registers direct

LHLD 16-bit address

The instruction copies the contents of the
memory location pointed out by the 16-
bit address into register L and copies the
contents of the next memory location into
register H. The contents of source
memory locations are not altered.
Example: LHLD 2040H

Store accumulator direct

STA 16-bit address

The contents of the accumulator are
copied into the memory location
specified by the operand. This is a 3-
byte instruction, the second byte
specifies the low-order address and the
third byte specifies the high-order
address.
Example: STA 4350H

Store accumulator Indirect

STAX Reg. pair

The contents of the accumulator are
copied into the memory location
specified by the contents of the operand
(register pair). The contents of the
accumulator are not altered.
Example: STAX B

Store H and L registers direct

SHLD 16-bit address

The contents of register L are stored into
the memory location specified by the 16-
bit address in the operand and the
contents of H register are stored into the
next memory location by incrementing
the operand. The contents of registers HL
are not altered. This is a 3-byte
instruction, the second byte specifies the
low-order address and the third byte
specifies the high-order address.
Example: SHLD 2470H

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 6

Exchange H and L with D and E

XCHG none
The contents of register H are exchanged
with the contents of register D, and the
contents of register L are exchanged with
the contents of register E.
Example: XCHG

Copy H and L registers to the stack pointer

SPHL none

The instruction loads the contents of the
H and L registers into the stack pointer
register, the contents of the H register
provide the high-order address and the
contents of the L register provide the
low-order address. The contents of the H
and L registers are not altered.
Example: SPHL

Exchange H and L with top of stack

XTHL none

The contents of the L register are
exchanged with the stack location
pointed out by the contents of the stack
pointer register. The contents of the H
register are exchanged with the next
stack location (SP+1); however, the
contents of the stack pointer register are
not altered.
Example: XTHL

Push register pair onto stack

PUSH Reg. pair

The contents of the register pair
designated in the operand are copied
onto the stack in the following
sequence. The stack pointer register is
decremented and the contents of the
high- order register (B, D, H, A) are
copied into that location. The stack
pointer register is decremented again and
the contents of the low-order register (C,
E, L, flags) are copied to that location.
Example: PUSH B or PUSH A

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 7

Pop off stack to register pair

POP Reg. pair

The contents of the memory location
pointed out by the stack pointer register
are copied to the low-order register (C, E,
L, status flags) of the operand. The stack
pointer is incremented by 1 and the
contents of that memory location are
copied to the high-order register (B, D,
H, A) of the operand. The stack pointer
register is again incremented by 1.
Example: POP H or POP A

Output data from accumulator to a port with 8-bit address

OUT 8-bit port address
The contents of the accumulator are
copied into the I/O port specified by the
operand.
Example: OUT F8H

Input data to accumulator from a port with 8-bit address

IN 8-bit port address
The contents of the input port designated
in the operand are read and loaded into
the accumulator.

Example: IN 8CH

5. Explain the Arithmetic instructions of 8085 with example

ADDR/M –Add register or memory to accumulator:
The contents of the operand (register or memory) are added to the contents of the accumulator and
the result is stored in the accumulator. If the operand is a memory location, its location is
specified by the contents of the HL registers. All flags are modified to reflect the result of the
addition.
Example: ADD B or ADD M

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 8

ADC R/ M- Add register to accumulator with carry:
The contents of the operand (register or memory) and the Carry flag are added to the contents of
the accumulator and the result is stored in the accumulator. If the operand is a memory location,
its location is specified by the contents of the HL registers. All flags are modified to reflect the
result of the addition.
Example: ADC B or ADC M

ADI 8-bit data - Add immediate to accumulator:
The 8-bit data (operand) is added to the contents of the accumulator and the result is stored in the
accumulator. All flags are modified to reflect the result of the addition.
Example: ADI 45H

ACI 8-bit data- Add immediate to accumulator with carry:
The 8-bit data (operand) and the Carry flag are added to the contents of the accumulator and the
result is stored in the accumulator. All flags are modified to reflect the result of the addition.
Example: ACI 45H

DAD Reg. pair - Add register pair to H and L registers:
The 16-bit contents of the specified register pair are added to the contents of the HL register and
the sum is stored in the HL register. The contents of the source register pair are not change. If the
result is larger than 16 bits, the CY flag is set. No other flags are affected.
Example: DAD H

SUB R / M- Subtract register or memory from accumulator:
The contents of the operand (register or memory) are subtracted from the contents of the
accumulator, and the result is stored in the accumulator. If the operand is a memory location, its
location is specified by the contents of the HL registers. All flags are modified to reflect the result
of the subtraction.
Example: SUB B or SUB M

SBB R / M- Subtract source and borrow from accumulator:
The contents of the operand (register or memory) and the Borrow flag are subtracted from the
contents of the accumulator and the result is placed in the accumulator. If the operand is a
memory location, its location is specified by the contents of the HL registers. All flags are
modified to reflect the result of the subtraction.
Example: SBB B or SBB M

SUI 8-bit data- Subtract immediate from accumulator:
The 8-bit data (operand) is subtracted from the contents of the accumulator and the result is stored
in the accumulator. All flags are modified to reflect the result of the subtraction.
Example: SUI 45H

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 9

SBI 8-bit data - Subtract immediate from accumulator with borrow:
The 8-bit data (operand) and the Borrow flag are subtracted from the contents of the accumulator
and the result is stored in the accumulator. All flags are modified to reflect the result of the
subtraction.
Example: SBI 45H

INR R/ M - Increment register or memory by 1:
The contents of the designated register or memory) are incremented by 1 and the result is stored
in the same place. If the operand is a memory location, its location is specified by the contents of
the HL registers.
Example: INR B or INR M

INX R - Increment register pair by 1:
The contents of the designated register pair are incremented by 1 and the result is stored in the
same place.
Example: INX H

DCR R/ M- Decrement register or memory by 1:
The contents of the designated register or memory are decremented by 1 and the result is stored in
the same place. If the operand is a memory location, its location is specified by the contents of the
HL registers.
Example: DCR B or DCR M

DCX R - Decrement register pair by 1:
The contents of the designated register pair are decremented by 1 and the result is stored in the
same place.
Example: DCX H

DAA none - Decimal adjust accumulator:
The contents of the accumulator are changed from a binary value to two 4-bit binary coded
decimal (BCD) digits. This is the only instruction that uses the auxiliary flag to perform the
binary to BCD conversion, and the conversion procedure is described below. S, Z, AC, P, CY
flags are altered to reflect the results of the operation.

If the value of the low-order 4-bits in the accumulator is greater than 9 or if AC flag is set, the
instruction adds 6 to the low-order four bits. If the value of the high-order 4-bits in the
accumulator is greater than 9 or if the Carry flag is set, the instruction adds 6 to the high-order
four bits.
Example: DAA

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 10

6.Explain the Logical instructions of 8085 with example.

ANA R/ M- Logical AND register or memory with accumulator:
The contents of the accumulator are logically ANDed with the contents of the operand (register or
memory), and the result is placed in the accumulator. If the operand is a memory location, its
address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the
operation. CY is reset. AC is set.
Example: ANA B or ANA M

ANI 8-bit data - Logical AND immediate with accumulator:
The contents of the accumulator are logically ANDed with the 8-bit data (operand) and the result
is placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY is reset.
AC is set.
Example: ANI 86H

XRA R/ M - Exclusive OR register or memory with accumulator:
The contents of the accumulator are Exclusive ORed with the contents of the operand (register or
memory), and the result is placed in the accumulator. If the operand is a memory location, its

address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: XRA B or XRA M

XRI 8-bit data - Exclusive OR immediate with accumulator:
The contents of the accumulator are Exclusive ORed with the 8-bit data (operand) and the result
is placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY and AC
are reset.
Example: XRI 86H

ORA R/ M- Logical OR register or memory with accumulator:
The contents of the accumulator are logically ORed with the contents of the operand (register or
memory), and the result is placed in the accumulator. If the operand is a memory location, its
address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.

ORI 8-bit data - Logical OR immediate with accumulator:
The contents of the accumulator are logically ORed with the 8-bit data (operand) and the result is
placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY and AC
are reset.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 11

Example: ORI 86H

CMP R/ M - Compare register or memory with accumulator:
The contents of the operand (register or memory) are compared with the contents of the
accumulator. Both contents are preserved. The result of the comparison is shown by setting the
flags of the PSW as follows:
if (A) < (reg/mem): carry flag is set
if (A) = (reg/mem): zero flag is set
if (A) > (reg/mem): carry and zero flags are reset
Example: CMP B or CMP M

CPI 8-bit data - Compare immediate with accumulator:
The second byte (8-bit data) is compared with the contents of the accumulator. The values being
compared remain unchanged. The result of the comparison is shown by setting the flags of the
PSW as follows:
if (A) < data: carry flag is set
if (A) = data: zero flag is set
if (A) > data: carry and zero flags are reset
Example: CPI 89H

RLC none - Rotate accumulator left:
Each binary bit of the accumulator is rotated left by one position. Bit D7 is placed in the position
of D0 as well as in the Carry flag. CY is modified according to bit D7. S, Z, P, AC are not
affected.
Example: RLC

RRC none - Rotate accumulator right:
Each binary bit of the accumulator is rotated right by one position. Bit D0 is placed in the position
of D7 as well as in the Carry flag. CY is modified according to bit D0. S, Z, P, AC are not
affected.
Example: RRC

RAL none - Rotate accumulator left through carry:
Each binary bit of the accumulator is rotated left by one position through the Carry flag. Bit D7 is
placed in the Carry flag, and the Carry flag is placed in the D0. CY is modified according to bit
D7. S, Z, P, AC are not affected.
Example: RAL

RAR none - Rotate accumulator right through carry:
Each binary bit of the accumulator is rotated right by one position through the Carry flag. Bit D0

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 12

is placed in the Carry flag, and the Carry flag is placed in the D7. CY is modified according to bit
D0. S, Z, P, AC are not affected.
Example: RAR

CMA none - Complement accumulator:
The contents of the accumulator are complemented. No flags are affected. This instruction is use
to find 1’s compliment of data.
Example: CMA

CMC none - Complement carry:
The Carry flag is complemented. No other flags are affected.
Example: CMC

STC none- Set Carry:
The Carry flag is set to 1. No other flags are affected.
Example: STC

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 13

7.Explain the Branching instructions of 8085 with

example. Jump unconditionally

JMP 16-bit address:
The program sequence is transferred to the memory location specified by the 16-bit address given
in the operand.
Example: JMP 2034H or JMP XYZ

Jump conditionally

The program sequence is transferred to the memory location specified by the 16-bit address given
in the instruction based on the specified flag of the PSW as described below.
Example: JZ 2034H or JZ XYZ

Opcode Description Flag Status
JC Jump on Carry CY=1

JNC Jump on no Carry CY=0
JZ Jump on zero Z=1

JNZ Jump on no zero Z=0
JP Jump on positive S=0
JM Jump on minus S=1
JPE Jump on parity even P=1
JPO Jump on parity odd P=0

Unconditional subroutine call

CALL 16-bit address:
The program sequence is transferred to the memory location specified by the 16-bit address given
in the operand. Before the transfer, the address of the next instruction after CALL(the contents of
the program counter) is pushed onto the stack.
Example: CALL 2034H or CALL XYZ

Call conditionally

The program sequence is transferred to the memory location specified by the 16-bit address given
in the operand based on the specified flag of the PSW as described below. Before the transfer, the
address of the next instruction after the call (the contents of the program counter) is pushed onto
the stack.
Example: CZ 2034H or CZ XYZ

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 14

Opcode Description Flag Status
CC Call on Carry CY=1

CNC Call on no Carry CY=0
CZ Call on zero Z=1

CNZ Call on no zero Z=0
CP Call on positive S=0
CM Call on minus S=1
CPE Call on parity even P=1
CPO Call on parity odd P=0

Return from subroutine unconditionally

RET none:
The program sequence is transferred from the subroutine to the calling program. The two bytes
from the top of the stack are copied into the program counter, and program execution begins at
the new address.
Example: RET

Return from subroutine conditionally

The program sequence is transferred from the subroutine to the calling program based on the specified flag
of the PSW as described below. The two bytes from the top of the stack are copied into the program
counter, and program execution begins at the new address.
Example: RZ

Opcode Description Flag Status
RC Return on Carry CY=1

RNC Return on no Carry CY=0
RZ Return on zero Z=1

RNZ Return on no zero Z=0
RP Return on positive S=0
RM Return on minus S=1
RPE Return on parity even P=1
RPO Return on parity odd P=0

Restart

RST 0-7:
The RST instruction is equivalent to a 1-byte call instruction to one of eight memory locations
depending upon the number. The instructions are generally used in conjunction with interrupts
and inserted using external hardware. However these can be used as software instructions in a
program to transfer program execution to one of the eight locations. The addresses are:

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 15

Instruction Restart Address
RST0 0000H
RST1 0008H
RST2 0010H
RST3 0018H
RST4 0020H
RST5 0028H
RST6 0030H
RST7 0038H

The 8085 has four additional interrupts and these interrupts generate RST instructions internally
and thus do not require any external hardware. These instructions and their Restart addresses are:

Interrupt Restart Address
TRAP 0024H

RST 5.5 002CH
RST 6.5 0034H
RST 7.5 003CH

8.Explain the Machine Control instructions of 8085 with example.

NOP none - No operation is performed:
The instruction is fetched and decoded. However no operation is executed.
Example: NOP

HLT none -Halt and enter wait state:
The CPU finishes executing the current instruction and halts any further execution. An interrupt
or reset is necessary to exit from the halt state.
Example: HLT

DI none - Disable interrupts:
The interrupt enable flip-flop is reset and all the interrupts except the TRAP are disabled. No flags
are affected.
Example: DI

EI none - Enable interrupts:
The interrupt enable flip-flop is set and all interrupts are enabled. No flags are affected. After a
system reset or the acknowledgement of an interrupt, the interrupt enable flip flop is reset, thus
disabling the interrupts. This instruction is necessary to re enable the interrupts (except TRAP).
Example: EI

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 16

RIM none Read interrupt mask:
This is a multipurpose instruction used to read the status of interrupts 7.5, 6.5, 5.5 and read serial
data input bit. The instruction loads eight bits in the accumulator with the following
interpretations.

SIM none -Set interrupt mask:
This is a multipurpose instruction and used to implement the 8085 interrupts 7.5, 6.5, 5.5, and
serial data output. The instruction interprets the accumulator contents as follows.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 17

Example: SIM

9.What is stack? Explain stack related instruction with example OR Give
function of stack. OR What is stack? Explain the stack operations using
examples.

The stack is a group of memory location in the R/W memory (RAM) that is used for temporary
storage of data during the execution of a program.
Address of the stack is stored into the stack pointer register.

The 8085 provide two instructions PUSH & POP for storing information on the stack and reading
it back.

a. Data in the register pairs stored on the stack by using the instruction PUSH.

b. Data is read from the stack by using the instruction POP.

c. PUSH & POP both instruction works with register pairs only.

d. The storage and retrieval of the content of registers on the stack fallows the LIFO(Last-
In-First-Out) sequence.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 18

Operation of the stack by PUSH and POP Instruction

2000 LXI SP, 2099H ; this instruction define stack

2003 LXI H, 42F2H ; this instruction store 42F2 in to the HL pair

2006 PUSH H ; store HL pair on to the stack

2010 POP H ; store data from top of the stack to HL pair

For PUSH H

 The stack pointer is decremented by one to 2098H, and the contents of the h register are copied to
memory location 2098H.The stack pointer register is again decremented by one to 2097H,and the
contents of the L register are copied to memory location 2097H.The contents of the register pair
HL are not destroyed.

For POP H

 The contents of the top of the stack location shown by the stack pointer are copied in the L
register and the stack pointer register is incremented by one to 2098 H. The contents of the top of
the stack (now it is 2098H) are copied in the H register, and the stack pointer is incremented by
one. The contents of memory location 2097H and 2098 are not destroyed until some other data
bytes are stored in these location.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 19

10.Explain Subroutine with CALL and RET Instruction.

 A subroutine is a group of instructions that will be used repeatedly in different locations of the
program. Rather than repeat the same instructions several times, they can be grouped into a one
program which is called subroutine.
When main program calls a subroutine the program execution is transferred to the subroutine.

After the completion of the subroutine, the program execution returns to the main program.

The microprocessor uses the stack to store the return address of the subroutine.

The 8085 has two instructions for dealing with subroutines.

– The CALL instruction is used to CALL the subroutine.

– The RET instruction is used to return to the main program at the end of the subroutine.

– Subroutine process is shown in figure below.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 20

The CALL Instruction

CALL 16-bit address
The program sequence is transferred to the memory location specified by the 16-bit address
given in the operand. Before the transfer, the address of the next instruction after CALL (the
contents ofthe program counter) is pushed onto the stack.
Example: CALL 2034H or CALL XYZ
We can also call the subroutine by using conditional CALL instruction. For Example,CC

16-bit address Call on if CY = 1

CNC16-bit address Call on no Carry CY = 0

CP16-bit address Call on positive S = 0

CM16-bit address Call on minus S = 1

CZ 16-bit address Call on zero Z = 1

CNZ16-bit address Call on no zero Z = 0

CPE16-bit address Call on parity even P = 1

CPO16-bit address Call on parity odd P = 0

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 21

RET Instruction

RET none
The program sequence is transferred from the subroutine to the calling program. The two bytes
from the top of the stack are copied into the program counter, and program execution begins at
the new address.
Example: RET

We can also return from the subroutine by using conditional RET instruction. For Example,RC 16-

bit address Return if CY = 1

RNC16-bit address Return if CY = 0

RP16-bit address Return if S = 0

RM16-bit address Return if S = 1 RZ

16-bit address Return if Z = 1

RNZ16-bit address Return if Z = 0

RPE16-bit address Return if P = 1

RPO16-bit address Return if P = 0

11.Describe the looping and counting techniques. OR Explain looping,
counting &indexing with an example.

The Programming Technique used to instruct the microprocessor to repeat task is called looping.
This process is accomplished by using jump instructions.
A loop can be classified into two groups:

Continuous loop- repeats a task continuously

Conditional loop-repeats a task until certain data condition are met

Continuous loop
A continuous loop is set up by using the unconditional jump Instruction shown in the flowchart. A
program with Continuous loop does not stop repeating the tasks until the system is reset.

Conditional Loop
A Conditional loop is setup by the conditional jump instructions. These instructions Check flags
(zero, carry, etc.) and repeat the specified task if the conditions are satisfied. These loops usually
include counting and indexing. Conditional loop is shown by the Flowchart as follow.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 22

Fig: - Continuous Loop Fig: - Conditional Loop

The Flowchart is translated into the program as follows:

1. Counter is setup by loading an appropriate count in a register.

2. Counting is performed by either incrementing or decrementing the counter.

3. Loop is set up by a conditional jump instruction.

4. End of counting is indicated by a flag

12 Write short note on Software and hardware interrupt in 8085 based
systemOR List Hardware Interrupts of 8085 with its Address & Priority.

e. Interrupt: It means interrupting the normal execution of the microprocessor. When
microprocessor receives interrupt signal, it discontinues whatever it was executing. It starts
executing new program indicated by the interrupt signal.

f. Sequence of Steps Whenever There is an Interrupt
 It pushes the content of PC (Program Counter) to stack.

 Then loads the vector address in PC and starts executing the Interrupt Service Routine

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 23

(ISR) stored in this vector address.
 At the end of ISR, a return instruction – IRET will be placed. When the IRET instructionis

executed, the processors POP the content of stack to PC.
 Hence the processor control returns to the main program after servicing the interrupt.

g. Five Hardware Interrupts in 8085
(1) TRAP
(2) RST 7.5
(3) RST 6.5
(4) RST 5.5
(5) INTR

Classification of Interrupts
(1) Maskable and Non-Maskable
(2) Vectored and Non-Vectored
(3) Edge Triggered and Level Triggered
(4) Priority Based Interrupts

 Maskable Interrupts

Maskable interrupts are those interrupts which can be enabled or disabled. Enabling and Disabling is

done by software instructions. The interrupts can be masked by moving an appropriate data to

accumulator and then executing SIM instruction. (SIM - Set Interrupt Mask).The status of maskable

interrupts can be read into accumulator by executing RIM instruction (RIM - Read Interrupt Mask).

List of Maskable Interrupts:

RST 7.5

RST 6.5

RST 5.5INTR

 Non-Maskable Interrupts

The interrupts which are always in enabled mode are called non maskable interrupts. Theseinterrupts
can never be disabled by any software instruction.
TRAP is a non-maskable interrupt.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 24

Vectored Interrupts
The interrupts which have fixed memory location for transfer of control from normalexecution.
List of vectored interrupts:
RST 7.5
RST 6.5
RST 5.5TRAP
The addresses to which program control goes:

Name Vectored Address
RST 7.5 003C H (7.5 x 0008 H)
RST 6.5 0034 H (6.5 x 0008 H)
RST 5.5 002C H (5.5 x 0008 H)
TRAP 0024 H (4.5 x 0008 H)

Non-Vectored Interrupts
The interrupts which don't have fixed memory location for transfer of control from normal execution is

called Non-Vectored Interrupts. The address of the memory location is sent along with the interrupt.

INTR is a non-vectored interrupt.

Edge Triggered Interrupts
The interrupts which are triggered at leading or trailing edge are called edge triggeredinterrupts.
RST 7.5 is an edge triggered interrupt. It is triggered during the leading (positive) edge.

Level Triggered Interrupts
The interrupts which are triggered at high or low level are called level triggered interrupts.RST 6.5
RST 5.5, INTR are level trigger. TRAP is edge and level triggeredinterrupt

 Priority Based Interrupts
Whenever there exists a simultaneous request at two or more pins then the pin with higher priority is
selected by the microprocessor. Priority is considered only when there are simultaneous requests.

Priority of interrupts:
Interrupt Priority

TRAP 1
RST 7.5 2
RST 6.5 3
RST 5.5 4

INTR 5

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 25

 Software Interrupts
 The software interrupts are program instructions. These instructions are inserted at desired locations in a program.

While running a program, if software interrupt instruction is encountered, then the processor executes an
interrupt service routine (ISR).

When the instruction is executed, the processor executes an interrupt service routine stored inthe vector address of
the software interrupt instruction. The software interrupts of 8085 are RST 0, RST1, RST 2, RST 3, RST 4, RST
5, RST6 and RST 7.

 All software interrupts of 8085 are vectored interrupts. The software interrupts cannot be masked and they cannot
be disabled. The vector addresses of software interrupts are given in table below

Interrupt Vector Address
RST0 0000H
RST1 0008H
RST2 0010H
RST3 0018H
RST4 0020H
RST5 0028H
RST6 0030H
RST7 0038H

13. Explain 8085 Vectored interrupts: TRAP, RST 7.5, RST 6.5, RST 5.5 and RST.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 26

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 27

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Prepared By: Department of Computer Engineering Page 28

