Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Unit — 111 8085 Assembly L anguage Programming

(1) Explain instruction format and Opcode format of 8085 pP with example.
OR With help of examples, explain the formation of opcodes of 8085 OR
What isan instruction? List type of instruction based on size.

Each instruction of 8085 has 1 byte opcode. With 8 bit binary code, we can generate 256 different
binary codes. In this, 246 codes have been used for opcodes.

One-byte instruction :| OPCODE
Two-bytes instruction :| OPCODE 8-bit data/
address
L ; : - e Low byte High byte
Three-bytes instruction : | OPCODE Butntedtoesd |lutatadiess

The size of 8085 instructions can be 1 byte, 2 bytesor 3
bytes. The 1-byte instruction has an opcode alone.

The 2 bytes instruction has an opcode followed by an eight-bit address or data.

The 3 bytes instruction has an opcode followed by 16 bit address or data. While storing the 3 bytes
instruction in memory, the sequence of storage is, opcode first followed by low byte of address or
data and then high byte of address or data.

2. Explain the addressing mode of 8085. OR What do you mean by
addressing mode? Explain diff. addressing mode for 8085 with examples.

Every instruction of a program has to operate on a data. Data may be direct in instruction, in
Register or in Memory. The method of specifying the datainto the instruction is called Addressing
mode.

The 8085 has the following 5 different types of addressing.
1. Immediate Addressing mode

2. Register addressing mode

3. Direct Addressing mode

Prepared By: Department of Computer Engineering Page 1

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

4. Indirect Addressing mode
5. Implied Addressing mode

Immediate Addressing
In immediate addressing mode, the data is specified in the instruction itself. The datawill be a part

of the program instruction. All instructionsthat have “ | * in their mnemonics are of immediate
addressing type. For Example, MV B, 3EH - Move the data 3EH given in the instruction to B
register.

Register Addressing

In register addressing mode, the instruction specifies the name of the register in which the dataiis
available. This type of addressing can be identified by register names (such as ‘A’, ‘B’ etc.) in the
instruction. For Example, MOV A, B -Move the content of B register to A register.

Direct Addressing

In direct addressing mode, the datawill be in memory. The address of the datais specified in the
instruction directly.

For Example, LDA 1050H - Load the data available in memory location 1050H in accumulator.

Indirect Addressing

In indirect addressing mode, the data will be in memory. The address of the datais specified in the
instruction indirectly i.e. addressis store in Registers. This type of addressing can be identified by
letter ‘M’ present in the instruction.

For Example: MOV A, M - The memory data addressed by HL pair is moved to A register.

Implied Addressing

In implied addressing mode, there is no operand. i.e. Thistype of instruction does not have any
address, register name, immediate data specified along with it.

For Example, CMA - Complement the content of accumulator.

(3)_Explain the classification of instructions of 8085 on the basis of their
operation OR Give classification of 8085 instruction set with an example of
each

The 8085 instruction set can be classified into the following six functional group.
1) DataTransfer Instructions

2) Arithmetic Instructions

3) Logical Instructions

4) Branching Instructions

5) Stack related instructions

Prepared By: Department of Computer Engineering Page 2

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

6) Input/output instructions
7) Machine Control Instructions

Group | - DATA TRANSFER INSTRUCTIONS:

These instructions move data between registers, or between memory and registers. These
instructions copy data from source to destination. While copying, the contents of source are not
modified.

Ex:i) MOV A, B ii) LDA 4600 iii) LHLD 4200

Group Il -ARITHMETIC INSTRUCTIONS:
Theseinstructions perform the operations like: Addition, Subtract, Increment, and Decrement.

Addition:-Any 8-bit number, or the contents of register, or the contents of memory location can be added to
the contents of accumulator. The result (sum) is stored in the accumulator. No two other 8-bit registers can
be added directly. Example: The contents of register B cannot be added directly to the contents of register
C. For example, ADD B

Subtraction: - Any 8-bit number, or the contents of register, or the contents of memory location can be
subtracted from the contents of accumulator. The result is stored in the accumulator. Subtraction is
performed in 2’s complement form. If the result is negative, it is stored in 2’s complement form. No two
other 8-hit registers can be subtracted directly. For example, SUB C

Increment and Decrement: - The 8-bit contents of aregister or a memory location can be incremented or
decremented by 1.The 16-bit contents of aregister pair can be incremented or decremented by 1.Increment
or decrement can be performed on any register or amemory location. Ex: i) INR D ii) INX H

Group 111 - LOGICAL INSTRUCTIONS:-

These instructions perform logical operations on data stored in registers, memory and status flags. The
logical operations are: AND, OR, XOR, Rotate, Compare, and Complement

For example, i) ORA B ii) XRA A iii) RAR

Group IV - BRANCHING INSTRUCTIONS:

The branching instruction changes the normal sequential flow of the Program. These instructions alter either
unconditionally or conditionally.

For example, i) JZ 4200ii) RST 7iii) CALL 4300

Group V - STACK RELATED INSTRUCTIONS:
Stack Related instructions are used for accessing the stack.
For example- PUSH B, POP C

Group VI - I/O INSTRUCTION
I/O instructions are used for reading or writing the input output port. For example IN 80H, OUT 90H

Group VI - MACHINE CONTROL INSTRUCTIONS:
The control instructions control the operation of microprocessor.

Prepared By: Department of Computer Engineering Page 3

Unit No: III

Subject Name: Computer Organization & Architecture

Subject Code: 4350701

For examplei) SIM ii) RIM iii) HLT

4. Explain the Data transfer instructions of 8085 with example.

Copy from sour ceto destination

Rd, Rs

MOV

This instruction copies the contents of the
source register into the destination
register, the contents of Rd, M the source
register are not atered. If one of the
operands is a memory location, its
location is specified by the contents of the
HL registers.

Example: MOV B,C or MOV B, M

Moveimmediate 8-bit

Rd, data
MVI

M, data

The 8-bit data is stored in the destination
register or memory. If the operand is a
memory location, Its location is specified

by the contents of the HL registers.
Example: MVI B, 57H or MVI M, 57H

L oad accumulator

LDA 16-bit address

The contents of a memory location,
specified by a 16-bit address in the
operand, are copied to the accumulator.
The contents of the source are not
atered.

Example: LDA 2034H

L oad accumulator indirect

LDAX B/D Reg. pair

The contents of the designated register
pair point to a memory location. This
Instruction copies the contents of that
memory location into the

Accumulator. The contents of either the
register pair or the memory location are
not altered.

Example: LDAX B

Prepared By: Department of Computer Engineering

Page 4

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Load register pair immediate

LXI Reg. pair, 16-bit data register pair designated in the operand.
Example: LXI H, 2034H or LXI H,
XYZ

The instruction loads 16-bit data in the

Load H and L registersdirect

The instruction copies the contents of the
memory location pointed out by the 16-
bit address into register L and copies the
LHLD 16-bit address contents of the next memory location into
register H. The contents of source
memory locations are not altered.

Example: LHLD 2040H

Storeaccumulator direct

The contents of the accumulator are
copied into the memory location
specified by the operand. This is a 3-
STA 16-bit address byte instruction, the second byte
specifies the low-order address and the
third byte specifies the high-order
address.

Example: STA 4350H

Storeaccumulator I ndirect

The contents of the accumulator are
) copied into the memory location
STAX Reg. par specified by the contents of the operand
(register pair). The contents of the
accumulator are not altered.

Example: STAX B

StoreH and L registersdirect

The contents of register L are stored into
the memory location specified by the 16-
bit address in the operand and the
contents of H register are stored into the
) next memory location by incrementing
SHLD 16-bit address the operand. The contents of registers HL
are not atered. This is a 3-byte
instruction, the second byte specifies the
low-order address and the third byte
specifies the high-order address.
Example: SHLD 2470H

Prepared By: Department of Computer Engineering

Page 5

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

ExchangeH and L withD and E

XCHG

none

The contents of register H are exchanged
with the contents of register D, and the
contents of register L are exchanged with
the contents of register E.
Example: XCHG

Copy H and L registersto the stack pointer

SPHL

none

The instruction loads the contents of the
H and L registers into the stack pointer
register, the contents of the H register
provide the high-order address and the
contents of the L register provide the
low-order address. The contents of the H
and L registers are not altered.

Example: SPHL

ExchangeH and L with top of stack

XTHL

none

The contents of the L register are
exchanged with the stack location
pointed out by the contents of the stack
pointer register. The contents of the H
register are exchanged with the next
stack location (SP+1); however, the
contents of the stack pointer register are
not altered.

Example: XTHL

Push register pair onto stack

PUSH

Reg. pair

The contents of the register pair
designated in the operand are copied
onto the stack in the following
sequence. The stack pointer register is
decremented and the contents of the
high- order register (B, D, H, A) are
copied into that location. The stack
pointer register is decremented again and
the contents of the low-order register (C,
E, L, flags) are copied to that location.
Example: PUSH B or PUSH A

Prepared By: Department of Computer Engineering

Page 6

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Pop off stack to register pair

The contents of the memory location
pointed out by the stack pointer register
are copied to the low-order register (C, E,
L, status flags) of the operand. The stack
POP Reg. pair pointer is incremented by 1 and the
contents of that memory location are
copied to the high-order register (B, D,
H, A) of the operand. The stack pointer
register is again incremented by 1.
Example: POPH or POP A

Output data from accumulator to a port with 8-bit address

The contents of the accumulator are
ouT 8-bit port address copied into the 1/0O port specified by the
operand.

Example: OUT F8H

I nput data to accumulator from a port with 8-bit address

The contents of the input port designated
IN 8-bit port address in the operand are read and loaded into
the accumul ator.

Example: IN 8CH

5. Explain the Arithmetic instructions of 8085 with example

ADDR/M —-Add register or memory to accumulator:
The contents of the operand (register or memory) are added to the contents of the accumulator and
the result is stored in the accumulator. If the operand is a memory location, its location is

specified by the contents of the HL registers. All flags are modified to reflect the result of the
addition.

Example: ADD B or ADD M

Prepared By: Department of Computer Engineering Page 7

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

ADC R/ M- Add register to accumulator with carry:
The contents of the operand (register or memory) and the Carry flag are added to the contents of
the accumulator and the result is stored in the accumulator. If the operand is a memory location,
its location is specified by the contents of the HL registers. All flags are modified to reflect the
result of the addition.
Examplee ADC B or ADCM

ADI 8-bit data - Add immediate to accumulator:
The 8-hit data (operand) is added to the contents of the accumulator and the result is stored in the
accumulator. All flags are modified to reflect the result of the addition.
Example: ADI 45H

ACI 8-bit data- Add immediate to accumulator with carry:
The 8-bit data (operand) and the Carry flag are added to the contents of the accumulator and the
result is stored in the accumulator. All flags are modified to reflect the result of the addition.
Example: ACI 45H

DAD Reg. pair - Add register pair toH and L registers:
The 16-bit contents of the specified register pair are added to the contents of the HL register and
the sum is stored in the HL register. The contents of the source register pair are not change. If the
result is larger than 16 bits, the CY flag is set. No other flags are affected.
Example: DAD H

SUB R /M- Subtract register or memory from accumulator:
The contents of the operand (register or memory) are subtracted from the contents of the
accumulator, and the result is stored in the accumulator. If the operand is a memory location, its
location is specified by the contents of the HL registers. All flags are modified to reflect the result
of the subtraction.
Example: SUB B or SUB M

SBB R/ M- Subtract source and borrow from accumulator:
The contents of the operand (register or memory) and the Borrow flag are subtracted from the
contents of the accumulator and the result is placed in the accumulator. If the operand is a
memory location, its location is specified by the contents of the HL registers. All flags are
modified to reflect the result of the subtraction.
Example: SBB B or SBB M

SUI 8-bit data- Subtract immediate from accumulator:
The 8-bit data (operand) is subtracted from the contents of the accumulator and the result is stored
in the accumulator. All flags are modified to reflect the result of the subtraction.
Example: SUI 45H

Prepared By: Department of Computer Engineering Page 8

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

SBI 8-bit data - Subtract immediate from accumulator with borrow:
The 8-bit data (operand) and the Borrow flag are subtracted from the contents of the accumulator
and the result is stored in the accumulator. All flags are modified to reflect the result of the
subtraction.
Example: SBI 45H

INR R/ M - Increment register or memory by 1.
The contents of the designated register or memory) are incremented by 1 and the result is stored
in the same place. If the operand is a memory location, its location is specified by the contents of
the HL registers.
Example: INRB or INRM

INX R - Increment register pair by 1:
The contents of the designated register pair are incremented by 1 and the result is stored in the
same place.
Example: INX H

DCR R/ M- Decrement register or memory by 1:
The contents of the designated register or memory are decremented by 1 and the result is stored in
the same place. If the operand is a memory location, its location is specified by the contents of the
HL registers.
Example DCR B or DCR M

DCX R - Decrement register pair by 1:
The contents of the designated register pair are decremented by 1 and the result is stored in the
same place.
Example: DCX H

DAA none - Decimal adjust accumulator:
The contents of the accumulator are changed from a binary value to two 4-bit binary coded
decima (BCD) digits. This is the only instruction that uses the auxiliary flag to perform the
binary to BCD conversion, and the conversion procedure is described below. S, Z, AC, P, CY
flags are altered to reflect the results of the operation.

If the value of the low-order 4-bits in the accumulator is greater than 9 or if AC flag is set, the
instruction adds 6 to the low-order four bits. If the value of the high-order 4-bits in the
accumulator is greater than 9 or if the Carry flag is set, the instruction adds 6 to the high-order
four bits.

Example: DAA

Prepared By: Department of Computer Engineering Page 9

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

6.Explain the Logical instructions of 8085 with example.

ANA R/ M- Logical AND register or memory with accumulator:
The contents of the accumulator are logically ANDed with the contents of the operand (register or
memory), and the result is placed in the accumulator. If the operand is a memory location, its
address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the
operation. CY isreset. AC is set.
Example: ANA B or ANA M

ANI 8-bit data - Logical AND immediatewith accumulator:
The contents of the accumulator are logically ANDed with the 8-bit data (operand) and the result
is placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY isreset.
ACisset.
Example: ANI 86H

XRA R/'M - Exclusive OR register or memory with accumulator:
The contents of the accumulator are Exclusive ORed with the contents of the operand (register or
memory), and the result is placed in the accumulator. If the operand is a memory location, its

address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the
operation. CY and AC arereset.
Example: XRA B or XRA M

XRI 8-bit data - Exclusive OR immediate with accumulator:
The contents of the accumulator are Exclusive ORed with the 8-bit data (operand) and the result
is placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY and AC
arereset.
Example: XRI 86H

ORA R/ M- Logical OR register or memory with accumulator:
The contents of the accumulator are logically ORed with the contents of the operand (register or
memory), and the result is placed in the accumulator. If the operand is a memory location, its
address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.

ORI 8-bit data - Logical OR immediate with accumulator:
The contents of the accumulator are logically ORed with the 8-bit data (operand) and the result is
placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY and AC
are reset.

Prepared By: Department of Computer Engineering Page 10

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Example: ORI 86H

CMPR/M - Compareregister or memory with accumulator:
The contents of the operand (register or memory) are compared with the contents of the
accumulator. Both contents are preserved. The result of the comparison is shown by setting the
flags of the PSW asfollows:
if (A) < (reg/mem): carry flagis set
if (A) = (reg/mem): zero flag is set
if (A) > (reg/mem): carry and zero flags are reset
Examplee CMP B or CMP M

CPI 8-bit data - Compareimmediate with accumulator:
The second byte (8-bit data) is compared with the contents of the accumulator. The values being
compared remain unchanged. The result of the comparison is shown by setting the flags of the
PSW asfollows:
if (A) <data: carry flagis set
if (A) =data: zero flagis set
if (A) > data: carry and zero flags are reset
Example: CPI 89H

RL C none - Rotate accumulator left:
Each binary bit of the accumulator is rotated left by one position. Bit D7 is placed in the position
of DO as well as in the Carry flag. CY is modified according to bit D7. S, Z, P, AC are not
affected.
Example: RLC

RRC none - Rotate accumulator right:
Each binary bit of the accumulator is rotated right by one position. Bit DO is placed in the position
of D7 as well as in the Carry flag. CY is modified according to bit DO. S, Z, P, AC are not
affected.
Example: RRC

RAL none- Rotate accumulator left through carry:
Each binary bit of the accumulator is rotated left by one position through the Carry flag. Bit D7 is
placed in the Carry flag, and the Carry flag is placed in the DO. CY is modified according to bit
D7.S, Z, P, AC are not affected.
Example: RAL

RAR none - Rotate accumulator right through carry:
Each binary bit of the accumulator is rotated right by one position through the Carry flag. Bit DO

Prepared By: Department of Computer Engineering Page 11

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

is placed in the Carry flag, and the Carry flag is placed in the D7. CY is modified according to bit
DO. S, Z, P, AC are not affected.
Example: RAR

CMA none - Complement accumulator:
The contents of the accumulator are complemented. No flags are affected. Thisinstruction is use
to find 1’s compliment of data.
Example: CMA

CMC none- Complement carry:
The Carry flag is complemented. No other flags are affected.
Example: CMC

STC none- Set Carry:
The Carry flag is set to 1. No other flags are affected.
Example: STC

Prepared By: Department of Computer Engineering Page 12

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

7.Explain the Branching instructions of 8085 with
example. Jump unconditionally

JMP 16-bit address:
The program sequence is transferred to the memory location specified by the 16-bit address given
in the operand.
Example: IMP 2034H or IMP XYZ

Jump conditionally

The program sequence is transferred to the memory location specified by the 16-bit address given
in the instruction based on the specified flag of the PSW as described below.
Example: JZ 2034H or JZ XYZ

Opcode Description Flag Status
JC Jump on Carry Cy=1
INC Jump on no Carry CY=0
JZ Jump on zero Z=1
INZ Jump on no zero Z=0
JP Jump on positive S=0
M Jump on minus S=1
JPE Jump on parity even P=1
JPO Jump on parity odd P=0

Unconditional subroutine call

CALL 16-bit address:
The program sequence is transferred to the memory location specified by the 16-bit address given
in the operand. Before the transfer, the address of the next instruction after CALL (the contents of
the program counter) is pushed onto the stack.
Example: CALL 2034H or CALL XYZ

Call conditionally

The program sequence is transferred to the memory location specified by the 16-bit address given
in the operand based on the specified flag of the PSW as described below. Before the transfer, the
address of the next instruction after the call (the contents of the program counter) is pushed onto
the stack.

Example: CZ 2034H or CZ XYZ

Prepared By: Department of Computer Engineering Page 13

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Opcode Description Flag Status
CcC Cdl on Carry Ccy=1
CNC Call on no Carry CY=0
(074 Cadl on zero Z=1
CNz Call on no zero Z=0
CP Call on positive S=0
CM Cal on minus 1
CPE Call on parity even P=1
CPO Call on parity odd P=0

Return from subroutine unconditionally

RET none:
The program sequence is transferred from the subroutine to the calling program. The two bytes
from the top of the stack are copied into the program counter, and program execution begins at
the new address.
Example: RET

Return from subroutine conditionally

The program sequence is transferred from the subroutine to the calling program based on the specified flag
of the PSW as described below. The two bytes from the top of the stack are copied into the program
counter, and program execution begins at the new address.

Example: RZ
Opcode Description Flag Status
RC Return on Carry Cy=1
RNC Return on no Carry CY=0
RZ Return on zero Z=1
RNZ Return on no zero Z=0
RP Return on positive S=0
RM Return on minus S=1
RPE Return on parity even P=1
RPO Return on parity odd P=0
Restart
RST 0-7:

The RST instruction is equivalent to a 1-byte call instruction to one of eight memory locations
depending upon the number. The instructions are generally used in conjunction with interrupts
and inserted using external hardware. However these can be used as software instructions in a
program to transfer program execution to one of the eight locations. The addresses are:

Prepared By: Department of Computer Engineering Page 14

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701
Instruction Restart Address
RSTO 0000H
RST1 0008H
RST2 0010H
RST3 0018H
RST4 0020H
RST5 0028H
RST6 0030H
RST7 0038H

The 8085 has four additiona interrupts and these interrupts generate RST instructions internally
and thus do not require any external hardware. These instructions and their Restart addresses are:

Interrupt Restart Address
TRAP 0024H
RST 55 002CH
RST 6.5 0034H
RST 7.5 003CH

8.Explain the Machine Control instructions of 8085 with example.

NOP none- No operation is perfor med:
Theinstruction is fetched and decoded. However no operation is executed.
Example: NOP

HLT none-Halt and enter wait state:
The CPU finishes executing the current instruction and halts any further execution. An interrupt
or reset is necessary to exit from the halt state.
Example: HLT

DI none- Disableinterrupts:
Theinterrupt enable flip-flop isreset and all the interrupts except the TRAP are disabled. No flags
are affected.
Example: DI

El none- Enableinterrupts:
The interrupt enable flip-flop is set and al interrupts are enabled. No flags are affected. After a
system reset or the acknowledgement of an interrupt, the interrupt enable flip flop is reset, thus
disabling the interrupts. Thisinstruction is necessary to re enable the interrupts (except TRAP).
Example: El

Prepared By: Department of Computer Engineering Page 15

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

RIM none Read interrupt mask:
This is a multipurpose instruction used to read the status of interrupts 7.5, 6.5, 5.5 and read serial
data input bit. The instruction loads eight bits in the accumulator with the following
interpretations.

D, Dy Ds Do Dy D Dy Dy
SID| 17 |16 |15 |IE |7.5|65[353

I I |
Serial input Interrupt
data bit masked if
bit = 1
Interrupts Interrupt enable
pending if « — flip-flop is set
bit = 1 if bit = 1

SIM none-Set interrupt mask:
This is a multipurpose instruction and used to implement the 8085 interrupts 7.5, 6.5, 5.5, and

seria data output. The instruction interprets the accumulator contents as follows.

Prepared By: Department of Computer Engineering Page 16

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

D, D, Ds D, D, D, D, Dy
[SOD | SDE | XXX | R7.5 | MSE | M7.5 [M6.5 [M5.5 |

| | I
]]
Serial output data Reset R7.5 Masks interrupts
if Dy = 1 if bits = 1
Serial data enable Mask set
1 = Enable enable if <
0 = Disable D; =1

1 SOD— Serial Output Data: Bit D+ of the accumulator is latched into the SOD output
line and made available to a serial peripheral if bit D, = 1.

71 SDE — Serial Data Enable: If this bit = 1, it enables the serial output. To implement
serial output, this bit needs to be enabled.

) XXX —Don’t Care

' R7.5—Reset RST 7.5: If this bit = |, RST 7.5 flip-flop is reset. This is an additional
control to reset RST 7.5.

C1 MSE — Mask Set Enable: If this bit is high, it enables the functions of bits D;, Dy, D,
This is a master control over all the interrupt masking bits. If this bit is low, bits Dy,
D,, and D, do not have any effect on the masks.

1 M7.5—D, = 0, RST 7.5 is enabled.

I, RST 7.5 is masked or disabled.

[l M6.5—D, = 0, RST 6.5 is enabled.
= |, RST 6.5 is masked or disabled.
0 M55—D; = 0,RST 5.5 is enabled.
= 1. RST 5.5 is masked or disabled.
Example: SIM

9.What is stack? Explain stack related instruction with example OR Give
function of stack. OR What is stack? Explain the stack operations using
examples.

The stack is a group of memory location in the R'W memory (RAM) that is used for temporary

storage of data during the execution of a program.
Address of the stack is stored into the stack pointer register.

The 8085 provide two instructions PUSH & POP for storing information on the stack and reading
it back.

a. Datain theregister pairs stored on the stack by using the instruction PUSH.
b. Dataisread from the stack by using the instruction POP.
c. PUSH & POP both instruction works with register pairs only.

d. The storage and retrieval of the content of registers on the stack fallows the LIFO(L ast-
In-First-Out) sequence.

Prepared By: Department of Computer Engineering Page 17

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Operation of the stack by PUSH and POP Instruction

2000 LXI SP, 2099H ; thisinstruction define stack

2003 LXI H, 42F2H ; thisinstruction store 42F2 in to the HL pair
2006 PUSH H ; store HL pair on to the stack

2010 POPH ; store data from top of the stack to HL pair
For PUSH H

The stack pointer is decremented by one to 2098H, and the contents of the h register are copied to
memory location 2098H.The stack pointer register is again decremented by one to 2097H,and the

contents of the L register are copied to memory location 2097H.The contents of the register pair
HL are not destroyed.

For POP H

- The contents of the top of the stack location shown by the stack pointer are copied in the L
register and the stack pointer register is incremented by one to 2098 H. The contents of the top of
the stack (now it is 2098H) are copied in the H register, and the stack pointer is incremented by

one. The contents of memory location 2097H and 2098 are not destroyed until some other data
bytes are stored in these location.

Prepared By: Department of Computer Engineering Page 18

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

10.Explain Subroutinewith CALL and RET Instruction.

- A subroutine is a group of instructions that will be used repeatedly in different locations of the
program. Rather than repeat the same instructions several times, they can be grouped into a one
program which is called subroutine.

When main program calls a subroutine the program execution is transferred to the subroutine.

After the completion of the subroutine, the program execution returns to the main program.
The microprocessor uses the stack to store the return address of the subroutine.
The 8085 has two instructions for dealing with subroutines.
— The CALL instruction is used to CALL the subroutine.
— The RET instruction is used to return to the main program at the end of the subroutine.

— Subroutine process is shown in figure below.

Prepared By: Department of Computer Engineering Page 19

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

Mam program

Call subroutine A Subroutine A

Next instruction First instruction

Call subroutine A

Next instruction

Return

The CALL Instruction

CALL 16-bit address

The program sequence is transferred to the memory location specified by the 16-bit address
given in the operand. Before the transfer, the address of the next instruction after CALL (the
contents ofthe program counter) is pushed onto the stack.

Example: CALL 2034H or CALL XYZ

We can also call the subroutine by using conditional CALL instruction. For Example,CC

16-bit address CalonifCy =1
CNC16-bit address Call onno Carry CY =0
CP16-bit address Call on positive S=0
CM16-bit address Cal onminusS=1

CZ 16-bitaddress CalonzerozZ=1
CNZ16-bit address Call onnozeroZ=0
CPE16-hit address Call on parity evenP=1
CPO16-hit address Call on parity odd P=0

Prepared By: Department of Computer Engineering Page 20

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

RET Instruction

RET none

The program sequence is transferred from the subroutine to the calling program. The two bytes
from the top of the stack are copied into the program counter, and program execution begins at
the new address.

Example: RET

We can also return from the subroutine by using conditional RET instruction. For Example,RC 16-
bit address Returnif CY =1

RNC16-bit address Returnif CY =0

RP16-bit address Returnif S=0

RM16-bit address Returnif S=1RZ

16-bit address Returnif z=1

RNZ16-bit address Returnif Z=0

RPE16-bit address Returnif P=1

RPO16-bit address Returnif P=0

11.Describe thelooping and counting techniques. OR Explain looping,
counting & indexing with an example.

The Programming Technique used to instruct the microprocessor to repeat task is called looping.
This process is accomplished by using jump instructions.

A loop can be classified into two groups:

Continuous loop- repeats a task continuously

Conditional loop-repeats atask until certain data condition are met

Continuous loop
A continuous loop is set up by using the unconditional jump Instruction shown in the flowchart. A
program with Continuous loop does not stop repeating the tasks until the system is reset.

Conditional L oop
A Conditional loop is setup by the conditional jump instructions. These instructions Check flags
(zero, carry, etc.) and repeat the specified task if the conditions are satisfied. These loops usually
include counting and indexing. Conditional |oop is shown by the Flowchart as follow.

Prepared By: Department of Computer Engineering Page 21

and Repeat

Fig: - Continuous Loop

The Flowchart is translated into the program as follows:

A w NP

End of counting isindicated by aflag

Counter is setup by loading an appropriate count in aregister.
Counting is performed by either incrementing or decrementing the counter.
Loop is set up by aconditional jump instruction.

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701
(Start J
5 Ser up
[Start 1 cuunler J
|
> INaslk pertformed
¥ Reduce Count by One
Perform
Task l
.\"\
,f/f T
1= \\
NOY COUNTER .,
ZERO? "
\\H P
T e
v Nt
Go back YES

[

Fig: - Conditiona Loop

12 Write short note on Software and hardware interrupt in 8085 based
systemOR List Hardwar e Interrupts of 8085 with its Address & Priority.

e. |nterrupt: It means interrupting the normal execution of the microprocessor. When
microprocessor receives interrupt signal, it discontinues whatever it was executing. It starts
executing new program indicated by the interrupt signal.

f. Sequence of StepsWhenever Thereisan Interrupt

—> It pushes the content of PC (Program Counter) to stack.
- Then loads the vector address in PC and starts executing the Interrupt Service Routine

Prepared By: Department of Computer Engineering

Page 22

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

(ISR) stored in this vector address.

- Attheend of ISR, areturn instruction — IRET will be placed. When the IRET instructionis
executed, the processors POP the content of stack to PC.

- Hence the processor control returns to the main program after servicing the interrupt.

g. FiveHardwarelInterruptsin 8085
(1) TRAP
(2) RST 7.5
(3) RST 6.5
(4) RST 5.5
(5) INTR

Classification of Interrupts
(1) Maskable and Non-Maskable
(2) Vectored and Non-V ectored
(3) Edge Triggered and Level Triggered
(4) Priority Based Interrupts

< Maskable Interrupts

Maskable interrupts are those interrupts which can be enabled or disabled. Enabling and Disabling is
done by software instructions. The interrupts can be masked by moving an appropriate data to
accumulator and then executing SIM instruction. (SIM - Set Interrupt Mask).The status of maskable
interrupts can be read into accumulator by executing RIM instruction (RIM - Read Interrupt Mask).

List of Maskable Interrupts:

RST 7.5

RST 6.5

RST 5.5INTR

< Non-Maskable Interrupts

The interrupts which are aways in enabled mode are called non maskable interrupts. Theseinterrupts
can never be disabled by any software instruction.
TRAP is anon-maskabl e interrupt.

Prepared By: Department of Computer Engineering Page 23

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

< Vectored Interrupts
The interrupts which have fixed memory location for transfer of control from normal execution.
List of vectored interrupts:
RST 7.5
RST 6.5
RST 5.5TRAP
The addresses to which program control goes:

Name Vectored Address
RST 7.5 003C H (7.5 x 0008 H)
RST 6.5 0034 H (6.5 x 0008 H)
RST 5.5 002C H (5.5 x 0008 H)

TRAP 0024 H (4.5 x 0008 H)

< Non-Vectored Interrupts
The interrupts which don't have fixed memory location for transfer of control from normal execution is

caled Non-Vectored Interrupts. The address of the memory location is sentalong with the interrupt.

INTR isanon-vectored interrupt.

< Edge Triggered Interrupts
The interrupts which are triggered at leading or trailing edge are called edge triggeredinterrupts.
RST 7.5isan edgetriggered interrupt. It istriggered during the leading (positive) edge.

< Leve Triggered Interrupts
The interrupts which are triggered at high or low level are called level triggered interrupts.RST 6.5
RST 5.5, INTR are level trigger. TRAP is edge and level triggeredinterrupt

< Priority Based Interrupts

Whenever there exists a simultaneous request at two or more pins then the pin with higher priority is
selected by the microprocessor. Priority is considered only when there are simultaneous requests.

Priority of interrupts:

Interrupt Priority
TRAP 1
RST 7.5 2
RST 6.5 3
RST 5.5 4
INTR 5

Prepared By: Department of Computer Engineering Page 24

Subject Name: Computer Organization & Architecture Unit No: III Subject Code: 4350701

< SoftwareInterrupts

= The software interrupts are program instructions. These instructions are inserted at desired locations in a program.
While running a program, if software interrupt instruction is encountered, then the processor executes an
interrupt service routine (ISR).

= When the instruction is executed, the processor executes an interrupt service routine stored inthe vector address of
the software interrupt instruction. The software interrupts of 8085 are RST 0, RST1, RST 2, RST 3, RST 4, RST
5, RST6 and RST 7.

> All software interrupts of 8085 are vectored interrupts. The software interrupts cannot be masked and they cannot
be disabled. The vector addresses of software interrupts are given in table below

Interrupt Vector Address
RSTO 0000H
RST1 0008H
RST2 0010H
RST3 0018H
RST4 0020H
RST5 0028H
RST6 0030H
RST7 0038H

13. Explain 8085 Vectored interrupts: TRAP, RST 7.5, RST 6.5, RST 5.5 and RST.

Eﬂg__u Voeeotn geal e demruetrs. _

i s e

_.___3,.| SEYA e tAICan ProCetCoy P ete -
five - JFoeodervifl QAvfel - frvd i teicly Oy

L mipr s bememd I!T-‘-\&J Al sleaflce s i e el -

= Vwdegauel & on - Hhe Ton®m teaen o f

; Hoxel jonse BAagrnal., i,

;) e 1 cas omgisd T RAD
e THe FaFfs - micko PmeceALtT . O0 L *
e Lo peT oS By g, 0 RST .5 el o & B 8 L
_._a.!_'l'.?_-ﬂ__ Sy Pawnn Mpselle. amdd e cam met—

Covirred 1 lowngd . we_com o met SSokle T
e ryel ol AN =T Truw ovnse Meslconle: Amol pee

| oo coitrodl 44 eimal AIS b le. T4

Subject Name: Computer Organization & Architecture Unit No: Il Subject Code: 4350701

ViSiUOMN—— L
Tl Paga Mo, !

=

' ey R 3w 1_;%-
oy TRAP , BSTZS, RSTo

= TRAP G024l
Bl e | .. 00 8
R e 06 %4 H

e pipos | .60 2¢H |
RINEITR = (s P-mu?ég_ﬁ_ﬂy_\!—:&mﬂr e -
pk apy e ¢ L Hasd wese - -

:_ S Hhere jo MO Neotsw &Oﬁﬁfﬂfﬂ La ‘&f VTR,
Trteyoguret.. the addyess ' fow 1 TA]
Pro e By de ertesnod Hondwore

o) oy |NTRE Hon (D ert _Pm&{fy 1

B mirwe 2
W I e dn g N

c Tudt e bev

Subject Name: Computer Organization & Architecture

Unit No: Il Subject Code: 4350701

bale | . Pageld
i

| .
|Gl 0 8
Ll The—twRe . 1C .Qaumuafﬂ&e4lw#¥ﬂﬂ&r R
g |IIL.E & - S e -E:.:_ -
i B B 8y ¥ o]
r i — — > =] :‘: 1:__ E :‘3 L= Tl
e -
E$
o7 o -
_— 5.2
L — =
E_._ ______ et | ST L | o] | e
—_— — e — - =) = N e T e e it o e net
s~y o 1o o
& E
T L]
o v o B
—=1g) 0 0 = |
= w 0y |
—5 |&] & . G |-
L 73 lah e J-"
0 et A
m § of 5¥%, -
£ € ™~& & gh e 3
[e
i w8
St T T S
| The, RTE g Feveqgeal Purfoce Teteryipiand
Sl S S ST level Xovgyer, & -

_And

levet

—en | TR AP amal

PsT H-< are. edge Mm@fi
_&2}% e’ Botts .

e ——

=

PrEparct by: DEPATUIETT 01 COMPULET ENZIIEETTg

rag

Subject Name: Computer Organization & Architecture Unit No: Il Subject Code: 4350701

ViSION - |
Diain I FPago Na. ‘ 1
|

D e a8
2l RSt Fc, ﬂsiﬁf--mdﬂi_;

_' I'F-"TIL. ane emoakle — amnd —‘i{&%

g’?; EL darel pr. Trutreetion. ——==3

syl DT Z-& QPsTes, RST 56 Tlderrvrbs |

Cxnp al Lo Ao Ad-arr i _,Q_T_fﬂ f Q‘M'———H_
SIM _ Grstriredtion. 0_ e T s~ e

SIM (Sel- Tuweerpt Masi)

Tnis Tnstyuetion Readt the Contepnts of the

Bettiogpudotoy aund encbles o dicaplesthe

Iﬂmmﬂ__ﬂﬂgfé‘% 4y the Copteinds of e,

AelUagnulbeotry The formmnal ot T e wPretly
_Yhe contend= of +he Aectumnlatny s Chomwy

“-Lu.i-«a-_._ : G 3.

Pz be Ds Dy Dz D2 D -Bn

EJ_D DE | — [|RF5 | MSE M5 MEs| Ms-5

e o

r

; A - RST=7-5 0= Unanaiked
r S _RST €5 4= masiced
Seip] gudprl a— ¢ L i

L Dinig ; ———RsT 5:5 —
| wSagbe PR . v . —
——L&—iﬂﬂsﬁ%ﬂh—.—ﬂ — > Masle Sed Eneble. o~ Unmask
]] " & s

: : = A M
!‘_'___] set

” Rl ReT 72 =1 =dcable

